

1MA0_2H				
Question	Working	Answer	Mark	Notes
22	$a = 3, b = -4, c = -2$ $x = \frac{-4 \pm \sqrt{(-4)^2 - 4 \times 3 \times -2}}{2 \times 3}$ $= \frac{4 \pm \sqrt{16 + 24}}{6} = \frac{4 \pm \sqrt{40}}{6}$ $= 1.72075922$ <p>or</p> $= -0.3874258867$ <p>OR</p> $x^2 - \frac{4}{3}x - \frac{2}{3} = 0$ $\left(x - \frac{2}{3}\right)^2 - \left(\frac{2}{3}\right)^2 - \frac{2}{3} = 0$ $x - \frac{2}{3} = \sqrt{\left(\frac{2}{3}\right)^2 + \frac{2}{3}}$ $x = \frac{2}{3} \pm \sqrt{\frac{10}{9}}$	1.72, -0.387	3	M1 for $\frac{-4 \pm \sqrt{(-4)^2 - 4 \times 3 \times -2}}{2 \times 3}$ (condone incorrect signs for -4 and -2) M1 for $\frac{4 \pm \sqrt{40}}{6}$ or $\frac{2 \pm \sqrt{10}}{3}$ A1 for one answer in the range 1.72 to 1.721 and one answer in the range -0.387 to -0.38743 OR M1 for $\left(x - \frac{2}{3}\right)^2$ oe M1 for method leading to $\frac{2}{3} \pm \sqrt{\frac{10}{9}}$ oe A1 for one answer in the range 1.72 to 1.721 and one answer in the range -0.387 to -0.38743

1MA0_2H				
Question	Working	Answer	Mark	Notes
19	<p>16 metres: 8×10^8 km. 16: $8 \times 10^8 \times 1000$ $16: 8 \times 10^{11}$ 1: 5×10^{10}</p> <p>OR</p> <p>2 m to 10^8 km 2m to 100 000 000 000m 1m to 50 000 000 000m</p>	$1: 5 \times 10^{10}$	3	<p>M1 (indep) correct method to convert to consistent units</p> <p>M1 $\frac{'8 \times 10^8'}{'16'}$ (units may not be consistent) or 5×10^{10} oe or 5×10^7 oe</p> <p>A1 1: 5×10^{10} or 1: 50 000 000 000</p> <p>OR</p> <p>M1 (indep) correct method to convert to consistent units</p> <p>M1 $\frac{'16'}{8}$ to $'10^8'$</p> <p>A1 1: 5×10^{10} or 1: 50 000 000 000</p>
20	$\frac{3(x+1)}{6} + \frac{2(x+3)}{6} = \frac{3x+3+2x+6}{6}$	$\frac{5x+9}{6}$	3	<p>M1 Use of common denominator of 6 (or any other multiple of 6) and at least one numerator correct</p> <p>Eg. $\frac{3(x+1)}{6}$ or $\frac{2(x+3)}{6}$</p> <p>M1 $\frac{3(x+1)}{6} + \frac{2(x+3)}{6}$ oe</p> <p>A1 cao</p>

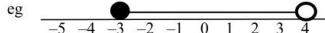
Paper: 1MA1/2H			
Question	Answer	Mark	Mark scheme
20	3.75	P1	works to find vol of frustum eg $1/3\pi(3.6)^2 \times 6.4 - 1/3\pi(1.8)^2 \times 3.2$ or $86.858\dots - 10.857\dots = 76.00\dots$ ($=24.192\pi$ or $76.00\dots$)
		P1	works to find vol of hemisphere eg $\frac{1}{2} \times \frac{4}{3}\pi \times 3.6^3$ ($=31.104\pi$ or $97.7\dots$)
		P1	mass of frustum as [vol]×density eg “ $76.00\dots \times 2.4$ ($=182.4\dots$)” or mass of hemisphere as [vol]×density eg “ $97.7\dots \times 4.8$ ($=469.037\dots$)”
		P1	mean density as total mass ÷ total volume eg $(182.4\dots + 469.037\dots) \div (76\dots + 97.7\dots)$ or $651.4\dots \div 173.7\dots$
		A1	answer in the range 3.7 to 3.8
21	proof	C1	uses cyclic quad eg if $CAB = x$ then $CRO = 180 - x$ (<u>Opposite angles of a cyclic quadrilateral add up to 180°</u> .)
		C1	establishes relationship outside a circle eg $ORB = x$ (<u>Angles on a straight line add up to 180°</u>)
		C1	uses properties of a circle eg $RO = OB$ (both radii) so $ABC = x$ (<u>Base angles of an isosceles triangle are equal</u> .)
		C1	Complete proof and conclusion
			Underlined words need to be shown; reasons need to be linked to their method; any reasons not linked do not credit. Correct method can be implied from angles on the diagram if no ambiguity or contradiction. Full reasons given without any redundant reasons and correct reasoning throughout.

Paper: 1MA1/2H				
Question	Answer	Mark	Mark scheme	Additional guidance
1	16.2	M1 A1	for a correct first step to find BC , eg $19^2 = 10^2 + BC^2$ or $19^2 - 10^2$ (= 261) or $\sqrt{19^2 - 10^2}$ or $\sqrt{261}$ or $3\sqrt{29}$ for answer in the range 16.1 to 16.2	Can use alternative letter for BC provided intention is clear If using an alternative method using trigonometry must have BC as the only unknown ISW incorrect rounding if answer given in range
2 (a)	$2 \times 3 \times 5$	M1 A1	for a complete method to find prime factors; could be shown on a complete factor tree with no more than one error or by division by prime factors with no more than one error or for 2, 3, 3, 5 for $2 \times 3 \times 5$ oe	Condone the inclusion of 1 for this mark
(b)	36	B1	for 36	Accept $2 \times 3^2 \times 5$ Accept $2^2 \times 3^2$ or $2 \times 2 \times 3 \times 3$
3	4	M1 A1	for method to use formula, eg $72 \div 6$ (= 12) or $72 \div 9$ (= 8) cao	Can be implied by $\frac{72}{6}$ or $\frac{72}{9}$

Paper: 1MA1/2H				
Question	Answer	Mark	Mark scheme	Additional guidance
17 (a) (b)	Shows re-arrangement 1.669763088	C1	for showing rearrangement, must see $x^4 = x^2 + 5$ leading to $x = \sqrt[4]{x^2 + 5}$	Can work backwards
		M1	for substitution to find x_1 eg $\sqrt[4]{1.5^2 + 5} (= 1.64\dots)$	
		M1	for substitution to find x_2 eg $\sqrt[4]{1.64\dots^2 + 5} (= 1.66\dots)$	
		A1	for answer in the range 1.6697 to 1.6698 or 1.67(0)	If a correct value is given and then rounded or rounded incorrectly award full marks
18	Shown	M1	for start to method to find a ratio connecting 2 of a , b and c , eg $a : c = 3 : 5$ oe or $b : c = 5 : 3$ oe or for start to method to combine ratios, eg $14a : 35c (= 126 : 525)$ and $20b : 35c (= 500 : 525)$	May be expressed in fractional form Any ratios must be clearly assigned to variables
		M1	for method to find $a : b : c$, eg $9 : 25 : 15$ oe or for method to write $a + b : b + c$ in terms of one variable eg $\frac{3c}{5} + \frac{5c}{3} : \frac{5c}{3} + c$	
		A1	for $a + b : b + c = 34 : 40$ oe leading to result	34: 40 may be seen as $9 + 25 : 25 + 15$
19	46.989...	B1	for stating at least one bound, 9.25 or 9.35 or 12.55 or 12.65	Accept 9.349 or 9.3499(...) or 12.649 or 12.6499(...)
		P1	for correct use of LB and UB, eg $\sin x = \frac{[\text{LB of } AB]}{[\text{UB of } AC]}$	$9.25 \leq \text{LB} < 9.3$ $12.6 < \text{UB} \leq 12.65$ $\sin(x) = 0.731(\dots)$
		A1	for answer in the range 46.98 to 47 from correct working	Answer only award no marks.

Paper: 1MA1/2H				
Question	Answer	Mark	Mark scheme	Additional guidance
13	58.5	P1 P1 P1 A1	for start of process to find angle BCA , eg $\frac{18}{\sin 70} = \frac{15}{\sin BCA}$ or $\frac{\sin 70}{18} = \frac{\sin BCA}{15}$ for rearrangement, eg $(\sin BCA =) \frac{15 \sin 70}{18}$ ($= 0.783\dots$) oe or $BCA = 51.5\dots$ for complete process to find angle BAC , eg $180 - 70 - \sin^{-1}\left(\frac{15 \sin 70}{18}\right)$ for answer in the range 58.4 to 58.5	Angle BCA must be correctly identified to gain marks $\sin 70 = 0.939\dots$ $\sin 70 \div 18 = 0.052\dots$ $18 \div \sin 70 = 19.1\dots$ If an answer is given in the range in working and then rounded incorrectly award full marks.
14	$\frac{x+2}{2x+1}$	M1 M1 A1	for correctly factorising one expression, eg $(x-3)(x+2)$ or $(x-3)(2x+1)$ for factorising both expressions, eg $(x-3)(x+2)$ and $(x-3)(2x+1)$ oe or $a = 1, b = 2, c = 2, d = 1$	eg $\frac{2+x}{1+2x}, \frac{-x-2}{-2x-1}$

PAPER: 1MA0_2H				
Question	Working	Answer	Mark	Notes
12	(a)		2	B2 for $5n - 1$ oe (B1 for $5n + c$ ($c \neq -1$ or absent) or $n = 5n - 1$)
	(b)	$2(3n - n^2)$	1	B1 for $2(3n - n^2)$ oe
13	(a)	$-4, -3, -2, -1, 0$	2	B2 for all 5 correct values; ignore repeats, any order (B1 for 4 correct (and no incorrect) values or all 5 correct values and -5)
	(b)	$x > 4\frac{1}{2}$	2	M1 for an attempt to expand brackets (eg $6 \times x - 6 \times 2$) or $6x - 12$ or for an intention to divide both sides by 6 as the first step or for $4\frac{1}{2}$ oe A1 for $x > 4\frac{1}{2}$ oe
14	12, 24, 36, 48, 60, 72, 8, 16, 24, 32, 40, 48, 56, 64, 72....	25.80	5	M1 for listing at least 3 multiples of each of 12 and 8 or 24 in two lists of multiples or from factor trees M1 (dep) for attempt to find a common multiple of 12 and 8 above 60 (=72) M1 (dep M2) for method to find the number of boxes and the number of packs $72 \div 12 (=6)$ and $72 \div 8 (=9)$ M1 for finding the total cost by multiplying numbers by cost and adding eg “6” \times 2.50 + “9” \times 1.20 A1 for 25.8(0)


PAPER: 1MA0_2H				
Question	Working	Answer	Mark	Notes
15	$3x + y = 30$ $x + 3y = 22$	8.50 4.50	4	M1 for forming two algebraic equations M1 for a correct process to eliminate one variable (condone one arithmetic error) M1 (dep) for substituting found value in one of the equations or appropriate method after starting again (condone one arithmetic error) A1 for 8.5(0) and 4.5(0)
16	$AC^2 = 5^2 + 3^2$ $AC = \sqrt{25 + 9}$ (=5.83) $\frac{5}{5.83} = \frac{DB}{3}$ $DB = \frac{5}{5.83} \times 3$ (= 2.57) $5 + 3 + 5.83 + 2.57 =$ OR $AC = \sqrt{25 + 9}$ (=5.83) $\tan A = \frac{3}{5}$ $A = 30.96$ $\sin 30.96 = \frac{DB}{5}$ $DB = 5 \times \sin 30.96$ (= 2.57) $5 + 3 + 5.83 + 2.57 =$	16.4	5	M1 for $(AC^2) = 5^2 + 3^2$ (=34) M1 for $\sqrt{25 + 9}$ or $\sqrt{34}$ (=5.83) M1 for $\frac{5}{5.83} = \frac{DB}{3}$ or $DB \times AC = 5 \times 3$ M1 for $(DB) = \frac{5}{5.83} \times 3$ A1 for 16.4 to 16.41 OR M1 for $(AC^2) = 5^2 + 3^2$ (=34) M1 for $\sqrt{25 + 9}$ or $\sqrt{34}$ (=5.83) M1 for using a correct trig ratio in an attempt to find angle A or angle C, e.g. $\tan A = \frac{3}{5}$, $\sin A = \frac{3}{5.83}$, $\cos C = \frac{3}{5.83}$ M1 for using DB in a correct trig ratio, e.g. $\sin 30.96 = \frac{DB}{5}$ A1 for 16.4 to 16.41

PAPER: 1MA0_2H				
Question	Working	Answer	Mark	Notes
1	(a)		360	2 M1 $30 \div 10 (= 3)$ or $120 \div 10 (=12)$ or $120 + 120 + 120$ oe A1 cao
	(b)		25	2 M1 for $\frac{750}{300} (=2.5)$ oe A1 cao
2	(a)		Relationship	1 B1 for description of relationship eg "As the length of the pine cone increases the width increases" oe (accept positive correlation)
	(b)		6.1 to 6.4	2 M1 for a single straight line segment with positive gradient that could be used as a line of best fit or a vertical line from 8.4 or a point at (8.4, y) where y is from 6.1 to 6.4 A1 for given answer in the range 6.1 to 6.4
3	(a)		-1	2 M1 for $3 \times -5 + 7 \times 2$ A1 cao
	(b)		$3(x + 2)$	1 B1 cao
	(c)		$7y - 16$	2 M1 for intention to expand a bracket eg $5y - 10$ or $2y - 6$ A1 cao
	(d)		m^8	1 B1 cao
	(e)		p^4	1 B1 cao

Paper: 1MA1/2H

Question	Working	Answer	Mark	Notes
14		Region R shaded	M1 M1 A1	for two of the lines $y = 1$, $x + y = 5$, $y = 2x$ correctly drawn for three lines correctly drawn for fully correct region indicated with all lines correct
15 (a) (b)		No with reason 66	C1 M1 A1	for “no” with reason, eg Tracey should multiply 8 and 7 for starting a method to find number of games played, eg $12 \times 11 (= 132)$ or sum of integers from 1 to 11 cao
16	$\frac{-4 \pm \sqrt{(-4)^2 - 4 \times 1 \times 1}}{2 \times 1}$	0.268, 3.73	M1 A1	for $x - 2 = \pm\sqrt{3}$ oe or one solution or use of $x^2 - 4x + 1 = 0$ to substitute into formula (allow one error in substitution) 0.267 – 0.27, 3.7 – 3.74

Paper: 1MA1/2H				
Question	Working	Answer	Mark	Notes
3 (a)		31.4	P1	for working with circumference formula, eg $\pi \times 80 (=251. \dots)$ oe
			A1	for answer in the range 31.4 to 31.5 accept 10π
3 (b)		No (supported)	C1	Mean distance stays the same with reason, eg total distance remains unchanged or same number of points
			P1	for starting the process, eg by writing down a correct ratio or using a given number of cubes for one relationship, eg 2B 1Y or B:Y = 2:1 or 4G 1B or G:B = 4:1 or 8G, 1Y or G:Y = 8:1 oe or yellow = 2, blue = 4, or states 2:1:8 oe in any order (can be algebraic)
			P1	for complete process to find possible number of each colour or equivalent ratio, eg 8G 2B 1Y or G:B:Y = 8:2:1 oe or yellow = 2, blue = 4, green = 16 oe (can be algebraic)
4		$\frac{1}{11}$	A1	$\frac{1}{11}$ oe
5 (a)		(-2, 1) (-4, 1) (-2, 2) (-5, 2)	B1	Shape labelled A
			B1	Shape labelled B
5 (b)		(1, -4) (3, -4) (1, -5) (4, -5)		

Paper: 1MA1/2H				
Question	Answer	Mark	Mark scheme	Additional guidance
1 (a)	$x > -1$	B1	cao	
	Diagram drawn	C2	for a fully correct diagram, eg	
		(C1)	for drawing a line from -3 to 4 or (indep) for an open circle at 4 or (indep) for a closed circle at -3)	Condone arrow heads or line ending to denote the 'end' of the line
2 (a)	12	M1	for a correct factor tree for either 60 or 84 with no more than one arithmetic error or for listing factors of 60 or 84, at least 4 correct for either (with no more than 1 incorrect in either list), could be in factor pairs or for the prime factors of 60 (2, 2, 3, 5) or 84 (2, 2, 3, 7)	Condone the use of 1 in any factor tree 60: 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60 84: 1, 2, 3, 4, 6, 7, 12, 14, 21, 28, 42, 84
		A1	for 12 or $2 \times 2 \times 3$ oe SC B1 for answer of 4 or 6, if M0 scored	2,2,3 is not enough, it must be a product
	120	M1	for a correct factor tree for either 24 or 40 with no more than one arithmetic error or for at least 3 multiples of both 24 and 40 (can include 24 and 40) or for the prime factors of either 24 (2, 2, 2, 3) or 40 (2, 2, 2, 5) or for a common multiple from their lists ($\neq 120$)	Condone the use of 1 in any factor tree 24: 24, 48, 72, 96, 120, ... 40: 40, 80, 120, ... For the list not containing 120, accept the first 3 correct multiples or one error in the first 4 multiples
		A1	for 120 or $2 \times 2 \times 2 \times 3 \times 5$ oe	

Question 18(c)

Paper: 1MA1/2H				
Question	Answer	Mark	Mark scheme	Additional guidance
18	$\left(\frac{-16}{5}, \frac{48}{5} \right)$	P1 P1 P1 A1	for a method to find gradient of L_1 eg $\frac{6-2}{4-12} (= -\frac{1}{2})$ or states L_2 as $y = -3x$ (dep on P1) for a method to find equation of L_1 eg subs into $y = -\frac{1}{2}x + c$ OR states L_1 as $y = -\frac{1}{2}x + 8$ (dep on P2) complete method to equate both lines eg $-\frac{1}{2}x + 8 = -3x$ oe	Ignore sketches. Accept equivalents eg $(-3.2, 9.6)$
19	$9 < m < 11$ $-11 < m < -9$	M1 M1 M1 M1 A1	for a correct method to begin rearranging to solve for m^2 eg $88 < m^2 + 7$ or $m^2 + 7 < 128$ or $81 < m^2 < 121$ for a complete method to $m^2 = 81$ or $m^2 = 121$ or better for a set of critical values: at least two out of $9, 11, -9, -11$ for selecting a correct inequality for one set of critical values eg $9 < m$ and $m < -9$ or $m < 11$ and $-11 < m$ or $9 < m$ and $m < 11$ or a set of inequalities with some error eg $9 ? m ? 11$ and $-11 ? m ? -9$ where $?$ is an incorrect inequality symbol like $9 < m \leq 11$ or $9 \geq m \geq 11$ or answer given as $\pm 9 < m < \pm 11$ $9 < m < 11$ and $-11 < m < -9$ given as boundaries of m	It is insufficient to just multiply all three elements by 4; some rearrangement must occur such as showing as two separate inequalities or isolating m^2 Accept an inequality used in place of $=$. m^2 must be isolated at this stage. Do not award if other values are also given eg 10 Could be shown as $9 < m < 11$ or $-11 < m < -9$ or $-11 < m < 11$ Accept with an "and" or an "or" or neither

Paper: 1MA1/2H				
Question	Answer	Mark	Mark scheme	Additional guidance
3	65	M1 A1 C1	<p>for working with proportion eg $10 \div 30 \times 195 (=65)$</p> <p>cao</p> <p>for statement</p> <p>Acceptable examples sample is representative (otherwise answer wrong) random sample (otherwise answer will be different) the 30 students are from the 195 (otherwise not accurate) 10 out of every 30 want to go to the Theme Park (otherwise answer will be different/wrong) there is no bias</p> <p>Not acceptable examples There would be more than 10 people who want to go to the Theme Park I rounded my answer</p>	Condone use of 200 for 195
4	8	P1 P1 P1 A1	<p>for working with volume of the cuboid, eg $30 \times 6 \times 19 (= 3420)$ OR for using $\frac{2}{3}$ with one dimension, eg. $30 \times 2 \div 3 (= 20)$</p> <p>for “$3420 \times 2 \div 3 (= 2280)$ or “$3420 \div 3 (= 1140)$ OR “$20 \times 6 \times 19 (= 2280)$ OR “$3420 \div 275 (= 12.4\dots = 12 \text{ cups})$</p> <p>(dep on P2) for “$2280 \div 275 (= 8(.29\dots))$ or “$1140 \div 275 (= 4(.14\dots))$ OR “$12 \times 2 \div 3$ OR for $275 \times 8 (= 2200)$ or $275 \times 9 (= 2475)$</p> <p>cao</p>	For P marks, ignore attempts at unit conversion

Paper: 1MA1/2H				
Question	Answer	Mark	Mark scheme	Additional guidance
3	65	M1 A1 C1	<p>for working with proportion eg $10 \div 30 \times 195 (=65)$</p> <p>cao</p> <p>for statement</p> <p>Acceptable examples sample is representative (otherwise answer wrong) random sample (otherwise answer will be different) the 30 students are from the 195 (otherwise not accurate) 10 out of every 30 want to go to the Theme Park (otherwise answer will be different/wrong) there is no bias</p> <p>Not acceptable examples There would be more than 10 people who want to go to the Theme Park I rounded my answer</p>	Condone use of 200 for 195
4	8	P1 P1 P1 A1	<p>for working with volume of the cuboid, eg $30 \times 6 \times 19 (= 3420)$ OR for using $\frac{2}{3}$ with one dimension, eg. $30 \times 2 \div 3 (= 20)$</p> <p>for “$3420 \times 2 \div 3 (= 2280)$ or “$3420 \div 3 (= 1140)$ OR “$20 \times 6 \times 19 (= 2280)$ OR “$3420 \div 275 (= 12.4\dots = 12 \text{ cups})$</p> <p>(dep on P2) for “$2280 \div 275 (= 8.29\dots)$ or “$1140 \div 275 (= 4.14\dots)$ OR “$12 \times 2 \div 3$ OR for $275 \times 8 (= 2200)$ or $275 \times 9 (= 2475)$</p> <p>cao</p>	For P marks, ignore attempts at unit conversion

Paper: 1MA1/2H				
Question	Answer	Mark	Mark scheme	Additional guidance
22 (a)	163 or 164	P1	uses formula eg $1.2 \times 200 - 50 (= 190)$	
		P1	for complete process, eg May: $1.2 \times "190" - 50 (= 178)$ and June: $1.2 \times "178" - 50 (= 163.6)$	
		A1	for 163 or 164	
(b)	Statement	C1	(dep P1) ft statement, eg there won't be any rabbits, fewer rabbits, decrease	
23 (a)	Shown	C1	for a method to find the area of half of the parallelogram or of the whole parallelogram, eg $\frac{1}{2}(2x-1)(10-x) \sin 150$ or $\frac{1}{2}(2x-1)(10-x) \times \frac{1}{2}$ oe or $(2x-1)(10-x) \sin 150$ or $(2x-1)(10-x) \times \frac{1}{2}$ oe	
		C1	for a correct expansion of the whole area eg $\frac{1}{2}(20x-10-2x^2+x)$ or $\frac{1}{2}(-2x^2+21x-10)$ or $-x^2+10.5x-5$	
		C1	complete chain of reasoning with fully correct algebra dealing with the inequality eg $x^2 - 10.5x + 5 < -15$ or $x^2 - 10.5x + 20 < 0$ or $2x^2 - 21x + 10 < -30$ which lead to $2x^2 - 21x + 40 < 0$	
(b)	$2.5 < x < 8$	M1	for factorising, $(2x-5)(x-8)$	Could use the formula
		A1	for critical values, 2.5, 8	
		A1	for any statement that x is greater than 2.5 and x is less than 8	Need not be given as an inequality statement

Paper: 1MA1/2H				
Question	Answer	Mark	Mark scheme	Additional guidance
16	$\frac{52}{72}$	P1 P1 A1	for $\frac{4}{9} \times \frac{3}{8} \left(\frac{12}{72} \right)$ or $\frac{4}{9} \times \frac{5}{8}$ or $\frac{5}{9} \times \frac{4}{8} \left(\frac{20}{72} \right)$ for $1 - \left(\frac{5}{9} \times \frac{4}{8} \right)$ or $\frac{4}{9} \times \frac{3}{8} + \frac{4}{9} \times \frac{5}{8} + \frac{5}{9} \times \frac{4}{8}$ oe for $\frac{52}{72}, \frac{13}{18}$ oe SC B1 for answer of $\frac{56}{81}$ (replacement)	Accept equivalent fractions, decimals (0.72...) or percentages (72.22....%)
17	61	B1 M1 A1	angle $OAD = 90$, may be marked on diagram method to work out angle $OAB (=29)$ cao	Angle could be shown by a right-angle symbol Correct method can be implied from angles on the diagram if no ambiguity or contradiction. Reasons need not be given. Award 0 marks for an answer of 61 with no other working.
18	Bar of height 3.2	M1 M1 C1	method to find any frequency eg $1.2 \times 2.5 (= 3)$ or $2 \times 2.5 (= 5)$ or $2.8 \times 5 (= 14)$ or $0.8 \times 12.5 (= 10)$ or method to use areas eg $12 \times 5 (=60)$ or $20 \times 5 (=100)$ or $28 \times 10 (=280)$ or $8 \times 25 (=200)$ complete method to find total frequency for the four intervals eg "3" + "5" + "14" + "10" (=32) or "60" + "100" + "280" + "200" (=640) cao	Accept equivalent methods proportional to those shown

Paper: 1MA1/2H				
Question	Answer	Mark	Mark scheme	Additional guidance
1	Two statements	C2	<p>Two different statements</p> <p>Acceptable</p> <p>There is no 'frequency' label / y-axis is not labelled / no title for the y-axis</p> <p>The polygon should not be closed / have a line at the bottom / have first and last points connected</p> <p>(15, 6) has been plotted incorrectly / at (15, 8) / (The first point is at) 8 rather than 6 / First point is on an incorrect frequency</p> <p>Not acceptable</p> <p>There is no title / Points should be joined with a curve / x-axis doesn't start at 0</p> <p>There is no label / The axes have not been labelled (x and y)</p> <p>The points haven't (all) been plotted correctly</p> <p>$10 < w \leq 20$ and $30 < w \leq 40$ have been plotted wrong</p> <p>The first point is plotted incorrectly, its at (15, 7) not (15, 6)</p> <p>The points have been joined up wrong / Points should not be joined in the shape of a triangle / They've connected all the points</p> <p>Done the midpoints rather than the numbers on the right side / The points are in the middle</p> <p>for one statement eg from those above)</p>	Ignore additional statements provided no contradiction
2	127.5 and 128.5	B1	for 127.5 in the correct position	
		B1	for 128.5 in the correct position	Accept 128.49 or 128.499...
3	18	P1	for $240 \div 10 (= 24)$ or $240 \div 8 (= 30)$	Accept 3 + 7 for 10, 3 + 5 for 8
		P1	for $3 \times "24" (= 72)$ or $7 \times "24" (= 168)$ or $3 \times "30" (= 90)$ or $5 \times "30" (= 150)$	
		P1	for $3 \times "24" (= 72)$ and $3 \times "30" (= 90)$ or $7 \times "24" (= 168)$ and $5 \times "30" (= 150)$	
		A1	Cao	

Paper: 1MA1/2H				
Question	Answer	Mark	Mark scheme	Additional guidance
15	(M) 18, (K) 15	P1	<p>for start of process, eg $(6x + 1.5)$ and $(5x + 1.5)$ or $(6x + 1.5)$ and $(11x + 3)$ or $a + 1.5$ and $b + 1.5$</p> <p>OR starts to work with ratio, eg $6 : 5 = 12 : 10$</p> <p>P1 for setting up an equation, eg $\frac{6x+1.5}{5x+1.5} = \frac{13}{11}$ or $66x + 16.5 = 65x + 19.5$ or $\frac{6x+1.5}{11x+3} = \frac{13}{24}$ or $144x + 36 = 143x + 39$ or $\frac{a}{b} = \frac{6}{5}$ and $\frac{a+1.5}{b+1.5} = \frac{13}{11}$ or $5a = 6b$ and $11a + 16.5 = 13b + 19.5$ oe OR for comparing $12 : 10$ to $13 : 11$ and deducing 1 part = 1.5</p> <p>P1 for isolating in terms of x, eg $66x - 65x = 19.5 - 16.5$ or $144x - 143x = 39 - 36$ or $x = 3$ or for eliminating a or b, eg $55a = 66b$ and so $66b = 65b + 15$ OR for process to find values for M and K, eg 12×1.5 and 10×1.5 cao</p>	

Paper: 1MA1/2H				
Question	Answer	Mark	Mark scheme	Additional guidance
12	$6x^3 + x^2 - 20x - 12$	M1 M1 A1	for method to find the product of any two linear expressions (3 out of no more than 4 terms correct with correct signs or 4 correct terms ignoring signs), eg. $6x^2 + 9x + 4x + 6$ or $3x^2 + 2x - 6x - 4$ or $2x^2 + 3x - 4x - 6$ for method of multiplying out remaining products, half of which are correct (ft their first product), eg. $6x^3 + 13x^2 - 12x^2 + 6x - 26x - 12$ cao	Note that, for example, $6x^2 + 13x$ or $13x + 6$ are regarded as three terms in the expansion of $(x - 2)(3x + 2)$ First product must be quadratic but need not be simplified or may be simplified incorrectly.
13	192 000	M1 A1	for $16 \times 120 \times 100$ oe cao	
14	25 with reasons	M1 M1 C2 (C1)	for method to find angle BCD eg $180 \div (3 + 1) (= 45)$ or $BAD = 180 \div (3 + 1) \times 3 (=135)$ for method to find angle BDA eg $180 - 20 - (180 - "45") (=25)$ or method to find angle SBD eg $SBD = BCD (=45)$ for finding $SBA (=25)$ and both reasons given, eg <u>Opposite angles of a cyclic quadrilateral</u> add up to 180 for angle $SBD = 45$ because <u>alternate segment</u> theorem (dep M1) for one reason given <u>Opposite angles</u> of a <u>cyclic quadrilateral</u> add up to 180 for angle $SBD = 45$ because <u>alternate segment</u> theorem)	Could be shown on the diagram or in working Do not award if it ambiguous as to which angle is being found Underlined words need to be shown; reasons need to be linked to their method

Paper: 1MA1/2H				
Question	Answer	Mark	Mark scheme	Additional guidance
10	344 580.48	P1 P1 P1 A1	for a start to the process to find the initial investment eg $344\ 605 \div 1.025$ oe ($= 336\ 200$) or for 1.025^3 ($= 1.07689\dots$) for complete process to find original investment, eg $344\ 605 \div 1.025^3$ oe ($= 319\ 078$ to $320\ 265$) for [initial investment] $\times 1.02^2 \times 1.035$ oe for answer in the range 343 587 to 344 581	[initial investment] must be clearly what they believe to be that and cannot be 344605
11 (a)	(9, 7.5)	M1 A1	for x coordinate $= PO(6) \times \frac{3}{2}$ ($= 9$) or y coordinate $= OQ(3) \times \frac{5}{2}$ ($= 7.5$) or $PO(6) \times \frac{5}{2}$ ($= 15$) or $OQ(3) \times \frac{3}{2}$ ($= 4.5$) cao	
(b)	$y = -2x + 3$	P1 P1 A1	for process to find the gradient of the line, eg $3 \div 6$ ($= 0.5$) or $y = mx + 3$ for process to find gradient of perpendicular eg $-1 \div [\text{gradient of } PQ]$ ($= -2$) for $y = -2x + 3$ oe	Could use P and R or Q and R as ft from (a)

Paper: 1MA1/2H				
Question	Answer	Mark	Mark scheme	Additional guidance
5	41.6	P1 P1 P1 A1	for start of process to find the length of the hypotenuse, eg $(hyp^2 =) 8^2 + 10^2 (= 164)$ for complete process to find hypotenuse, eg $\sqrt{8^2 + 10^2}$ or $\sqrt{64+100}$ or $\sqrt{164}$ (= 12.8...) (dep P2) for complete process to find the required perimeter, eg $8 + 8 + 10 + "12.8" + "12.8 - 10"$ or $16 + 4\sqrt{41}$ for answer in the range 41 to 42	Note lengths may be seen on the diagram 8 + 8 + "12.8" + "12.8" oe is acceptable for this mark If an answer in the range 41 to 42 is given in the working space then incorrectly rounded, award full marks.
6 (a)	17.8	M1 A1	for $\tan 56 = \frac{x}{12}$ or $(BC) = 12 \times \tan 56$ oe or alternative method to find BC for an answer in the range 17.7 to 17.8	For any alternative method candidates must arrive at an equation with BC as the only unknown If an answer in the range 17.7 to 17.8 is given in the working space then incorrectly rounded, award full marks.
(b)	33.6	M1 A1	for $\cos x = \frac{15}{18}$ or $\cos x = 0.83$.. or $x = \cos^{-1} \frac{15}{18}$ or alternative method to find x for an answer in the range 33.5 to 33.91	For any alternative method candidates must arrive at an equation with x as the only unknown If an answer in the range 33.5 to 33.91 is given in the working space then incorrectly rounded, award full marks.