

Q1	Model Solution – 30 Marks	Marking Notes
(a)	$\begin{aligned} \frac{(4-2i)}{(2+4i)} &= \frac{4-2i}{2+4i} \times \frac{2-4i}{2-4i} \\ &= \frac{(8-16i-4i-8)}{2^2+4^2} \\ &= \frac{-20i}{20} \\ &= 0 - 1i \\ \therefore k &= -1 \end{aligned}$ <p style="text-align: center;">OR</p> $\begin{aligned} \frac{(4-2i)}{(2+4i)} &= \frac{-i(2+4i)}{2+4i} \\ &= 0 - 1i \\ \therefore k &= -1 \end{aligned}$ <p style="text-align: center;">OR</p> $4 - 2i = ki(2 + 4i)$ <p>Re: $4 = -4k \quad \therefore k = -1$</p> <p>or Im: $-2i = 2ki \quad \therefore k = -1$</p>	<p>Scale 10C(0, 3, 7, 10) Note: Accept $0 - 1i$</p> <p>Low Partial Credit:</p> <ul style="list-style-type: none"> $2 - 4i$ $4 - 2i = ki(2 + 4i)$ <p>High Partial Credit:</p> <ul style="list-style-type: none"> $\frac{4-2i}{2+4i} \times \frac{2-4i}{2-4i}$ $4 - 2i = -4k + 2ki$ Sets Re = Re or Im = Im <p>Full Credit – 1:</p> <ul style="list-style-type: none"> $0 - i$ or $-1i$ as solution, with k not identified.
(b)	$\begin{aligned} -5 + 12i &= (a + bi)^2 \\ a^2 + 2abi - b^2 & \end{aligned}$ <p>Re: $a^2 - b^2 = -5$</p> <p>Im: $2ab = 12 \quad \therefore b = \frac{6}{a}$</p> $a^2 - \left(\frac{6}{a}\right)^2 = -5$ $a^4 + 5a^2 - 36 = 0$ $(a^2 + 9)(a^2 - 4) = 0$ $\therefore a = \pm 2 \text{ and } b = \pm 3$ <p>Answer: $2 + 3i, -2 - 3i$</p> <p style="text-align: center;">OR</p> $\begin{aligned} r &= \sqrt{5^2 + 12^2} = 13 \\ \tan \theta &= -\frac{12}{5} \text{ so } \cos \theta = -\frac{5}{13} \end{aligned}$ $\begin{aligned} (-5 + 12i)^{\frac{1}{2}} &= [13(\cos(\theta + 2n\pi) + i \sin(\theta + 2n\pi))]^{\frac{1}{2}} \\ &= \sqrt{13} \left(\cos\left(\frac{\theta}{2} + n\pi\right) + i \sin\left(\frac{\theta}{2} + n\pi\right) \right) \end{aligned}$ $2 \sin^2\left(\frac{\theta}{2}\right) = 1 - \cos \theta = 1 + \frac{5}{13}$ <p>So $\sin\left(\frac{\theta}{2}\right) = \frac{3}{\sqrt{13}}$ and so $\cos\left(\frac{\theta}{2}\right) = \frac{2}{\sqrt{13}}$</p> $n = 0: \sqrt{13} \left(\cos\left(\frac{\theta}{2}\right) + i \sin\left(\frac{\theta}{2}\right) \right)$	<p>Scale 10D(0, 3, 5, 8, 10) Note: Accept $2 + 3i$ for Full Credit</p> <p>Low Partial Credit:</p> <ul style="list-style-type: none"> $(a + bi)^2 = -5 + 12i$ $a + bi = (-5 + 12i)^{\frac{1}{2}}$ r or θ found $-5 + 12i$ plotted on Argand diagram. Shows some knowledge of De Moivre's theorem <p>Mid Partial Credit:</p> <ul style="list-style-type: none"> Relevant equation in a single variable Writes $-5 + 12i$ in polar form <p>High Partial Credit:</p> <ul style="list-style-type: none"> Finds $a = 2$ or $b = 3$ $-2 - 3i$ found Correct solution in polar form (accept with mishandling of $2n\pi$)

	$= \sqrt{13} \left(\frac{1}{\sqrt{13}} + i \frac{1}{\sqrt{13}} \right) = 1 + i$ $n = 1: \quad \sqrt{13} \left(\cos \left(\frac{\theta}{2} + \pi \right) + i \sin \left(\frac{\theta}{2} + \pi \right) \right)$ $= \sqrt{13} \left(-\frac{2}{\sqrt{13}} - i \frac{3}{\sqrt{13}} \right) = -2 - 3i$	
Q1	Model Solution – 30 Marks	Marking Notes

(c)

$$z^3 = r(\cos\theta + i \sin\theta)$$

$$z = (r(\cos\theta + i \sin\theta))^{\frac{1}{3}}$$

$$= 2 \left(\cos \frac{\pi+2n\pi}{3} + i \sin \frac{\pi+2n\pi}{3} \right)$$

$$n = 0: \quad z = 2 \left(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \right) = 1 + \sqrt{3}i$$

$$n = 1: \quad z = 2 \left(\cos \frac{3\pi}{3} + i \sin \frac{3\pi}{3} \right) = -2$$

$$n = 2: \quad z = 2 \left(\cos \frac{5\pi}{3} + i \sin \frac{5\pi}{3} \right) = 1 - \sqrt{3}i$$

Scale 10D (0, 3, 5, 8, 10)

Note: if $((r(\cos\theta + i \sin\theta))^3$ is used, award *Low Partial Credit* at most.

Note: polar form must be used to achieve any credit

Low Partial Credit:

- $z = (r(\cos\theta + i \sin\theta))^{\frac{1}{3}}$
- r found
- θ found
- $-8 + 0i$ plotted on an Argand diagram
- Shows some knowledge of De Moivre's theorem

Mid Partial Credit:

- $z = 8^{\frac{1}{3}} \left(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \right)$
- $8^{\frac{1}{3}} \left(\cos \frac{\pi+2n\pi}{3} + i \sin \frac{\pi+2n\pi}{3} \right)$

High Partial Credit:

- One root evaluated in the form $a + bi$ from De Moivre's expression
- Three solutions in polar form

Q6	Model Solution – 30 Marks	Marking Notes
(a)	$ \begin{aligned} h'(x) &= a(x + 1)(x - 3) \\ &= a(x^2 - 2x - 3) \\ (0, 6) &\in h'(x) \\ \therefore 6 &= a(0 + 0 - 3) \\ \Rightarrow a &= -2 \\ h'(x) &= -2(x^2 - 2x - 3) \\ h'(x) &= -2x^2 + 4x + 6 \\ \text{OR} \\ h'(x) &= -2x^2 + 4x + 6 \\ y\text{-intercept} &= h'(0) = 6 \\ h'(x) &= -2(x + 1)(x - 3) \\ \therefore \text{Roots} &= -1 \text{ and } 3 \\ \text{OR} \\ h'(x) &= ax^2 + bx + c \\ h'(0) &= c = 6 \\ \text{So } h'(-1) &= a - b + 6 = 0 \\ \text{and } h'(3) &= 9a + 3b + 6 = 0 \\ 3 \times h'(1) &= 3a - 3b + 18 = 0 \\ \text{So } 12a + 24 &= 0 \\ \therefore a &= -2 \text{ and } b = 4 \\ \text{i.e. } h'(x) &= -2x^2 + 4x + 6 \end{aligned} $	<p>Scale 10D (0, 3, 5, 8, 10)</p> <p><i>Note:</i> Accept 3 points from graph verified as belonging to given equation of $h'(x)$</p> <p><i>Note:</i> three points identified from graph is <i>Low Partial Credit</i>.</p> <p><i>Low Partial Credit:</i></p> <ul style="list-style-type: none"> Identifies or uses a relevant value from the graph, for example, $(x + 1)$ or 3 A factorisation of given $h'(x)$, for example $2(-x^2 + 2x + 3)$ <p><i>Mid Partial Credit:</i></p> <ul style="list-style-type: none"> Generates $(x + 1)(x - 3)$ from graph Correctly verifies one point from the graph into the given $h'(x)$ Full factorisation of given $h'(x)$ Using simultaneous equations, finds one value (a, b, or c) <p><i>High Partial Credit:</i></p> <ul style="list-style-type: none"> Generates $x^2 - 2x - 3$ from graph From given $h'(x)$, finds two roots Correctly verifies two points from the graph into the given $h'(x)$ From given $h'(x)$, shows that y-intercept is 6 and fully factorises Using simultaneous equations, finds two values (from a, b, and c)
(b)	$ \begin{aligned} h''(x) &= -4x + 4 = 0 \text{ at max/min of } h'(x) \\ \therefore x &= 1 \\ h'''(x) &= -4 < 0, \text{i.e. max} \\ h'(1) &= -2(1)^2 + 4(1) + 6 = 8 \\ \text{OR} \\ &[\text{Quadratic with negative } x^2, \text{ so max occurs halfway between the roots:}] \\ x &= \frac{-1+3}{2} = 1 \\ h'(1) &= -2(1)^2 + 4(1) + 6 = 8 \\ \text{OR} \\ h'(x) &= -2(x^2 - 2x - 3) \\ &= -2(x^2 - 2x + 1 - 1 - 3) \\ &= -2((x - 1)^2 - 4) \\ &= -2(x - 1)^2 + 8 \\ \therefore \text{max positive slope} &= 8 \end{aligned} $	<p>Scale 10C(0, 3, 7, 10)</p> <p><i>Note:</i> It is possible to accept for <i>Full Credit</i> without $h'''(x) < 0$</p> <p><i>Low Partial Credit:</i></p> <ul style="list-style-type: none"> Some correct differentiation of $h'(x)$ Finds $h''(x)$ $h'(x) = -2(x^2 - 2x - 3)$ Indicates axis of symmetry on graph <p><i>High Partial Credit:</i></p> <ul style="list-style-type: none"> $x = 1$ $h'(x) = -2((x - 1)^2 - 4)$
(c)	$h(x) = \int h'(x) dx$	<p>Scale 10D (0, 3, 5, 8, 10)</p> <p><i>Note:</i> Accept correct answer without work.</p>

$$h(x) = -\frac{2x^3}{3} + \frac{4x^2}{2} + 6x + C$$

$$(0, -2) \in h(x):$$

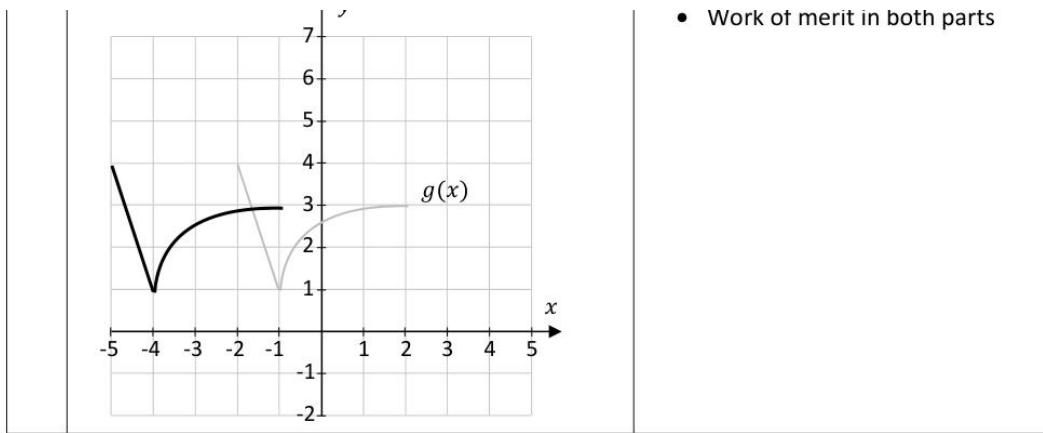
$$-2 = -0 + 0 + 0 + C$$

$$\Rightarrow C = -2$$

$$\therefore h(x) = -\frac{2x^3}{3} + 2x^2 + 6x - 2$$

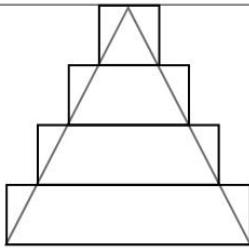
Low Partial Credit:

- Any indication of integration


Mid Partial Credit:

- Integration of 3 terms fully correct

High Partial Credit:


- Relevant equation in C (with substitution)

Q2	Model Solution – 30 Marks	Marking Notes
(a)	$f'(x) = 2x + b$ $f'(3) = 2(3) + b = 0$ $b = -6$ $f(3) = (3)^2 - 6(3) + c = -1$ $9 - 18 + c = -1$ $c = 8$ <p style="text-align: center;">OR</p> $x^2 + bx + c = \left(x + \frac{b}{2}\right)^2 - \frac{b^2}{4} + c$ $-\frac{b}{2} = 3 \text{ so } b = -6$ $-\frac{b^2}{4} + c = -1 \text{ so } c = 8$ <p style="text-align: center;">OR</p> $f(x) = (x - 3)^2 - 1$ $= x^2 - 6x + 8$	Scale 15D (0, 4, 8, 12, 15) Low Partial Credit: <ul style="list-style-type: none"> Work of merit, for example, $f(3)$ or some correct differentiation Work of merit at completing the square $(x - h)^2 + k$ Mid Partial Credit: <ul style="list-style-type: none"> b correct Uses $f(3)$ to find a correct equation in b and c $\left(x + \frac{b}{2}\right)^2 - \frac{b^2}{4} + c$ Work of merit in finding both b and c $(x - 3)^2 + k$, where $k \neq -1$ $(x - h)^2 - 1$, where $h \neq 3$ High Partial Credit: <ul style="list-style-type: none"> Finds b and work of merit in finding c $(x - 3)^2 - 1$
(b)	$\lim_{n \rightarrow \infty} \left(\frac{n}{n+1} + \frac{n+1000}{n} + \left(\frac{1}{3}\right)^n \right)$ $= \lim_{n \rightarrow \infty} \left(\frac{n}{n+1} \right) + \lim_{n \rightarrow \infty} \left(\frac{n+1000}{n} \right) + \lim_{n \rightarrow \infty} \left(\left(\frac{1}{3}\right)^n \right)$ $= \lim_{n \rightarrow \infty} \left(\frac{1}{1 + \frac{1}{n}} \right) + \lim_{n \rightarrow \infty} \left(\frac{1 + \frac{1000}{n}}{1} \right) + \lim_{n \rightarrow \infty} \left(\left(\frac{1}{3}\right)^n \right)$ $= \frac{1}{1+0} + \frac{1+0}{1} + 0$ $= 2$	Scale 5C (0, 2, 3, 5) Note: Full credit for correct answer without work. Low Partial Credit: <ul style="list-style-type: none"> Work of merit, for example, indicates sum of limits, divides by highest power of n in one of first two terms Substitutes ∞ for n Finds two or more terms of the sequence, $T_n = \frac{n}{n+1} + \frac{n+1000}{n} + \left(\frac{1}{3}\right)^n$ High Partial Credit: <ul style="list-style-type: none"> One limit correctly evaluated and work of merit in any one of the other two limits
(c)		Model Solution – 30 Marks Marking Notes Scale 10C (0, 4, 7, 10) Low Partial Credit: <ul style="list-style-type: none"> Work of merit in one part, for example, one point correctly transformed In part (i) any vertical translation of $g(x)$ In part (ii) any horizontal translation of $g(x)$ In part (i) finds $g(x + 2)$ or $g(x - 2)$ In part (ii) finds $g(x) - 3$ or $g(x) + 3$ High Partial Credit: <ul style="list-style-type: none"> One part correct

- Work of merit in both parts

Q3	Model Solution – 30 Marks	Marking Notes
(a)	<p>Assume that $\sqrt{2}$ is rational.</p> $\sqrt{2} = \frac{a}{b} \text{ where } a, b \in \mathbb{Z}, b \neq 0 \text{ and}$ $\text{HCF}(a, b) = 1$ $2 = \frac{a^2}{b^2}$ $2b^2 = a^2$ $\Rightarrow a^2 \text{ is even}$ <p>If a^2 is even, then a is even.</p> $\therefore a = 2k, \text{ where } k \in \mathbb{Z}$ $2b^2 = (2k)^2$ $2b^2 = 4k^2$ $b^2 = 2k^2$ $\therefore b^2 \text{ is even}$ <p>If b^2 is even, then b is even.</p> <p>If both a and b are even, then they have 2 as a common factor. This contradicts the assumption that $\text{HCF}(a, b) = 1$.</p>	<p>Scale 10D (0, 3, 5, 8, 10)</p> <p><i>Low Partial Credit:</i></p> <ul style="list-style-type: none"> • Work of merit, for example $\sqrt{2} = \frac{a}{b}$ • Work of merit in showing that a is even <p><i>Mid Partial Credit:</i></p> <ul style="list-style-type: none"> • Shows that a is even <p><i>High Partial Credit:</i></p> <ul style="list-style-type: none"> • Shows both a and b are even
(b)	<p>Method 1</p> $\log_3 t + \frac{\log_3 t}{\log_3 9} + \frac{\log_3 t}{\log_3 27} + \frac{\log_3 t}{\log_3 81} = 10$ $\log_3 t + \frac{\log_3 t}{2} + \frac{\log_3 t}{3} + \frac{\log_3 t}{4} = 10$ $12\log_3 t + 6\log_3 t + 4\log_3 t + 3\log_3 t = 120$ $25\log_3 t = 120$ $\log_3 t = \frac{120}{25}$ $t = 3^{\frac{120}{25}} = 3^{\frac{24}{5}}$ <p style="text-align: center;">OR</p> <p>Method 2</p> $\frac{1}{\log_t 3} + \frac{1}{\log_t 9} + \frac{1}{\log_t 27} + \frac{1}{\log_t 81} = 10$ $\frac{1}{\log_t 3} + \frac{1}{2\log_t 3} + \frac{1}{3\log_t 3} + \frac{1}{4\log_t 3} = 10$ $\frac{25}{12\log_t 3} = 10$ $\log_t 3 = \frac{25}{120}$ $t^{\frac{25}{120}} = 3$ $t = 3^{\frac{120}{25}}$	<p>Scale 10D (0, 3, 5, 8, 10)</p> <p>3 steps:</p> <ol style="list-style-type: none"> 1. Changing all to the same base 2. Simplifies to an equation in t with one log 3. Finds t <p><i>Low Partial Credit:</i></p> <ul style="list-style-type: none"> • Work of merit, for example, changes the base of one log (from the given equation) • Writes either 9, 27 or 81 in the form 3^k <p><i>Mid Partial Credit:</i></p> <ul style="list-style-type: none"> • One correct step <p><i>High Partial Credit:</i></p> <ul style="list-style-type: none"> • 2 correct steps
Q3	<p>(c)</p> <p>(i) Any valid explanation, for example: the power you need to raise 6 to, to get m.</p> <p>(ii) $\log_6 m > 1$</p>	<p>Scale 10C (0, 4, 7, 10)</p> <p>Note: Accept $6^x = m$ as a valid explanation for (i)</p> <p><i>Low Partial Credit:</i></p> <ul style="list-style-type: none"> • Work of merit in (i) or (ii), for example, some reference to indices • $\log_6 m > 0$ or $\log_6 m$ is positive <p><i>High Partial Credit:</i></p> <ul style="list-style-type: none"> • (i) or (ii) correct

Q10	Model Solution – 50 Marks	Marking Notes
(a)		Scale 5B (0, 2, 5) <i>Partial Credit:</i> <ul style="list-style-type: none"> Work of merit, for example, each rectangle of height 2 units
(b)	<p>Method 1</p> $h = \frac{8}{3}$ <p>Using similar triangles</p> $\frac{w_1}{2} = \frac{8}{3} \div 8 \quad (w_1 = \text{length of middle rectangle})$ $w_1 = \frac{2}{3}$ $w_2 = \frac{4}{3} \quad (w_2 = \text{length of top rectangle})$ $\text{Area} = 2\left(\frac{8}{3}\right) + \frac{4}{3}\left(\frac{8}{3}\right) + \frac{2}{3}\left(\frac{8}{3}\right)$ $= \frac{32}{3} \text{ units}^2$ <p>Method 2</p> <p>6 small triangles of length $\frac{2}{6} = \frac{1}{3}$</p> $\text{Area}_{\text{small } \Delta's} = 6 \times \frac{1}{2} \times \frac{1}{3} \times \frac{8}{3} = \frac{8}{3}$ $\text{Area}_{\text{big } \Delta} = \frac{1}{2} \times 2 \times 8 = 8$ $\text{Area}_{\text{rectangles}} = \frac{8}{3} + 8 = \frac{32}{3} \text{ units}^2$ <p>Method 3</p> <p>Sum of lengths of horizontal sides of small triangles (i.e., excess of rectangles over large triangle) = 2</p> <p>Height of each small triangle = $\frac{8}{3}$</p> $\sum \text{areas of small } \Delta's = \frac{1}{2} \times 2 \times \frac{8}{3} = \frac{8}{3}$ $\text{Area of large triangle} = \frac{1}{2} \times 2 \times 8 = 8$ $\therefore \text{Area of rectangles} = \frac{8}{3} + 8 = \frac{32}{3}$	Scale 10C (0, 4, 7, 10) <i>Low Partial Credit:</i> <ul style="list-style-type: none"> Work of merit in finding dimensions or area of one rectangle or one small triangle, Finds $h = \frac{8}{3}$ Finds the area of the large triangle <i>High Partial Credit:</i> <ul style="list-style-type: none"> w_1 and w_2 found Areas of 2 rectangles found Sum of the areas of the small triangles found with work shown
Q10	Model Solution – 50 Marks	Marking Notes
(c)	<p>Method 1</p> $T_4 = \frac{8}{4} \left[\frac{2}{4} + \frac{4}{4} + \frac{6}{4} + \frac{8}{4} \right]$ <p>Similarly,</p> $T_n = \frac{8}{n} \left[\frac{2}{n} + \frac{4}{n} + \cdots + \frac{2n}{n} \right]$ $= \frac{8}{n^2} [2 + 4 + 6 + \cdots + 2n]$ <p>$2 + 4 + \cdots + 2n$ is an A.P. with $a = 2$ and $d = 2$ and n terms</p> $S_n = \frac{n}{2} [2(2) + (n-1)(2)]$ $= n(n+1)$ $T_n = \frac{8}{n^2} [n(n+1)]$ $= \frac{8}{n} (n+1)$	Scale 5C (0, 2, 3, 5) <i>Low Partial Credit:</i> <ul style="list-style-type: none"> Work of merit, for example, work towards establishing pattern by writing T_k, $k \neq 3$ $\frac{8}{n}$ mentioned as height of rectangle Identifies $2n$ (or n) small triangles Base length of each small triangle found <i>High Partial Credit:</i> <ul style="list-style-type: none"> $T_n = \frac{8}{n} \left[\frac{2}{n} + \frac{4}{n} + \cdots + \frac{2n}{n} \right]$ or equivalent not in closed form

<p>or equivalent</p> <p>Method 2</p> <p>Total area = area of given triangle plus sum of areas of small triangles.</p> $h = \frac{8}{n}$ <p>2n small triangles</p> <p>Base of each small $\Delta = \frac{2}{2n} = \frac{1}{n}$</p> $\text{Area of small } \Delta's = 2n \times \frac{1}{2} \times \frac{1}{n} \times \frac{8}{n}$ $= \frac{8}{n}$ $\text{Area} = \left(\frac{8}{n}\right) + \left(\frac{1}{2} \times 2 \times 8\right)$ $= \frac{8}{n} + 8$	<ul style="list-style-type: none"> Finds sum of the areas of the small triangles
--	---

Q10	Model Solution – 50 Marks	Marking Notes
(d)	$\frac{8(n-1)}{n} > 0.95(8)$ $\frac{n-1}{n} > 0.95$ $n-1 > 0.95n$ $0.05n > 1$ $n > 20$ $n = 21$ <p style="text-align: center;">OR</p> $\frac{8n^2(n-1)}{n} > 0.95(8)n^2$ $8n^2 - 7.6n^2 - 8n > 0$ $0.4n^2 - 8n > 0$ $n^2 - 20n > 0$ $n(n-20) > 0$ $n > 20$ $n = 21$	<p>Scale 10D (0, 3, 5, 8, 10)</p> <p>Note: where candidates multiply both sides by n^2, they must find $n = 20$ to be awarded <i>High Partial Credit</i>.</p> <p><i>Low Partial Credit:</i></p> <ul style="list-style-type: none"> Work of merit in establishing inequality, for example, finds the area of triangle <p><i>Mid Partial Credit</i></p> <ul style="list-style-type: none"> Forms the correct inequality <p><i>High Partial Credit</i></p> <ul style="list-style-type: none"> $n-1 > 0.95n$
(e) (i)	$\int_0^h \frac{x^2 c^2}{h^2} dx = \frac{c^2}{h^2} \int_0^h x^2 dx$ $= \frac{c^2}{h^2} \left[\frac{x^3}{3} \right]_0^h$ $= \frac{c^2}{h^2} \left[\frac{h^3}{3} - 0 \right]$ $= \frac{c^2 h}{3}$	<p>Scale 10C (0, 4, 7, 10)</p> <p><i>Low Partial Credit:</i></p> <ul style="list-style-type: none"> Integral set up correctly <p><i>High Partial Credit</i></p> <ul style="list-style-type: none"> Integration is correct Mishandles $\frac{c^2}{h^2}$, but otherwise correct.

Q10	Model Solution – 50 Marks	Marking Notes
(e)(ii)	$\frac{dx}{dt} = 3 \quad \frac{dS}{dt} = \frac{dS}{dx} \times \frac{dx}{dt}$ $S(x) = \frac{x^2 c^2}{h^2}$ $\frac{dS}{dx} = \frac{c^2}{h^2} (2x)$	<p>Scale 10D (0, 3, 5, 8, 10)</p> <p><i>Low Partial Credit:</i></p> <ul style="list-style-type: none"> States a relevant derivative, for example, $\frac{ds}{dx}$ or $\frac{ds}{dt}$ $x = \frac{h}{2}$ Some correct differentiation

$$\frac{dS}{dt} = \frac{c^2}{h^2} (2x)(3)$$

$$= \frac{6c^2x}{h^2}$$

When $x = \frac{h}{2}$

$$\frac{dS}{dt} = \frac{6c^2 \left(\frac{h}{2}\right)}{h^2} = \frac{3c^2}{h}$$

• ~~SOME CORRECT DIFFERENTIATION~~

Mid Partial Credit

- Any **two** of the following:

- $\frac{dx}{dt} = 3$
- $x = \frac{h}{2}$

- $\frac{dS}{dx} = \frac{c^2}{h^2} (2x)$

- $\frac{ds}{dt} = \frac{ds}{dx} \times \frac{dx}{dt}$ or similar

High Partial Credit

- $\frac{ds}{dt} = \frac{ds}{dx} \times \frac{dx}{dt}$, and any two others from the *MPC* list above

Q3	Model Solution – 30 Marks	Marking Notes
(a)	$\frac{1}{6} \sin 6x + C$	Scale 5B (0, 2, 5) <i>Partial Credit</i> <ul style="list-style-type: none"> Some correct integration, for example, $\sin x$ <i>Full Credit –1</i> <ul style="list-style-type: none"> Apply a * if the $+C$ term is missing
(b) (i)	<p><i>Co-ordinates of the point of contact</i> $f(2) = -21$, so point is $(2, -21)$</p> <p><i>Slope of the tangent at $x = 2$</i> $f'(x) = 6x^2 - 18x + 5$ $f'(2) = -7$... slope of tangent</p> <p><i>Equation of the tangent at $x = 2$</i> $y - (-21) = -7(x - 2)$ or equivalent</p>	Scale 5D (0, 2, 3, 4, 5) Note: Engagement with Step 3 is required to be awarded credit for Step 4 Consider solution as involving 4 steps: <ol style="list-style-type: none"> 1. Finds y-value at $x = 2$ 2. Differentiates $2x^3 - 9x^2 + 5x - 11$ 3. Finds $f'(2)$ 4. Finds the equation of the tangent <p><i>Low Partial Credit</i></p> <ul style="list-style-type: none"> Work of merit, for example, some correct differentiation; Substitutes $x = 2$ in $f(x)$; Formula for the equation of a line with some relevant substitution <p><i>Mid Partial Credit</i></p> <ul style="list-style-type: none"> 2 steps correct <p><i>High Partial Credit</i></p> <ul style="list-style-type: none"> 3 steps correct
(b) (ii)	$f'(x) = 6x^2 - 18x + 5$ $f''(x) = 12x - 18$ $f''(x) = 0$ $12x - 18 = 0$ $x = \frac{3}{2}$ <p>Also accept the following for Full Credit:</p> <p><i>x values at local maximum & local minimum</i></p> $f'(x) = 0$ $6x^2 - 18x + 5 = 0$ $x_1 = \frac{18 + \sqrt{204}}{12}$ $x_2 = \frac{18 - \sqrt{204}}{12}$ <p><i>x co-ordinate of the point of inflection:</i></p> $\frac{x_1 + x_2}{2} = \frac{36}{12} \div 2$ $x = \frac{3}{2}$	Scale 5C (0, 2, 3, 5) <i>Low Partial Credit</i> <ul style="list-style-type: none"> Work of merit, for example, some correct differentiation of $f(x)$ or $f'(x)$; states $f''(x) = 0$ Brings down derivative from (i) <p><i>High Partial Credit</i></p> <ul style="list-style-type: none"> Correct $f''(x)$ Finds x values of local maximum and local minimum
(c)	Slope of $l = \frac{1}{2}$	Scale 15D (0, 4, 6, 8, 15)

Lines drawn parallel to l and touching the graph of $p(x)$ at $x \approx 2 \cdot 2$ and $x \approx 6 \cdot 8$

Low Partial Credit

- Work of merit, for example, mentions slope of $l = \frac{1}{2}$
- Draws a line parallel to $l(x)$
- Draws a horizontal line at $y = \frac{1}{2}$
- Relevant work to draw graph of $p'(x)$
- Draws two parallel tangents to $p(x)$ that are **not** parallel to $l(x)$

Mid Partial Credit

- One tangent drawn correctly

High Partial Credit

- Two tangents drawn correctly
- One tangent drawn correctly and corresponding x value estimated correctly
- Graphs of $l'(x)$ and $p'(x)$ shown on the diagram

Q8	Model Solution – 50 Marks	Marking Notes
(a) (i)	<p>Top 10% means 90% below. $P(z < 1.28) = 0.8997$.</p> $\frac{x-176}{36} = 1.28$ $\Rightarrow x = 222.08$ <p>Minimum mark of 223</p>	<p>Scale 10D (0, 3, 5, 8, 10)</p> <p><i>Note:</i> Accept use of $P(z < 1.29)$, to give $x = 222.44$</p> <p><i>Note:</i> Accept answer rounded to 222 instead of 223</p> <p><i>Low Partial Credit:</i></p> <ul style="list-style-type: none"> • Mean or standard deviation indicated • z-formula with some substitution <p><i>Mid Partial Credit:</i></p> <ul style="list-style-type: none"> • z-score found (1.28 or 1.29) • z-formula fully substituted ($\frac{x-176}{36}$) <p><i>High Partial Credit:</i></p> <ul style="list-style-type: none"> • $\frac{x-176}{36} = 1.28$
(a) (ii)	$P(165 < x < 210)$ $P\left(\frac{165-176}{36} < z < \frac{210-176}{36}\right)$ $= P(-0.31 < z < 0.94) \quad [2 \text{ D.P.}]$ $= P(z < 0.94) - P(z > -0.31)$ $P(z < 0.94) = 0.8264$ $P(z < -0.31) = 1 - P(z < 0.31)$ $= 1 - 0.6217 = 0.3783$ <p>So answer = $0.8264 - 0.3783 = 0.4481$</p> <p>$= 44.81\%$ of 1st years got the Distinction.</p>	<p>Scale 10D (0, 3, 5, 8, 10)</p> <p><i>Note:</i> Also accept use of -0.30 instead of -0.31, and/or use of 0.95 instead of 0.94.</p> <p><i>Low Partial Credit:</i></p> <ul style="list-style-type: none"> • Mean or standard deviation indicated • z formula with some substitution • $-0.305 \dots$ or $0.94 \dots$ <p><i>Mid Partial Credit:</i></p> <ul style="list-style-type: none"> • One relevant probability found directly from tables (0.6217 or 0.8264) <p><i>High Partial Credit:</i></p> <ul style="list-style-type: none"> • 0.3783 found • 0.8264 and 0.6217 found <p><i>Full Credit – 1:</i></p> <ul style="list-style-type: none"> • Uses $P(z > -0.35)$ and finishes correctly
Q8	Model Solution – 50 Marks	Marking Notes
(b) (i)	$T = \frac{19.8 - 21}{\left(\frac{5.2}{\sqrt{60}}\right)} = -1.787 \dots$	<p>Scale 5C (0, 2, 3, 5)</p> <p><i>Note:</i> Accept $1.787 \dots$</p> <p><i>Note:</i> $\frac{s}{\sqrt{n}}$ must be used in order to be awarded above <i>Low Partial Credit</i></p> <p><i>Low Partial Credit:</i></p> <ul style="list-style-type: none"> • Mean or standard deviation indicated • Relevant formula with some substitution <p><i>High Partial Credit:</i></p> <ul style="list-style-type: none"> • Formula fully substituted
(b) (ii)	<p>p-value:</p>	<p>Scale 10D (0, 3, 5, 8, 10)</p> <p><i>Note:</i> Accept $P(z > 1.787)$ as p-value</p>

	$ \begin{aligned} p &= 2[1 - P(z < 1.79)] \\ &= 2(1 - 0.9633) \\ &= 0.0734 \end{aligned} $ <p>Conclusion:</p> <p>There is not enough evidence to say that the claim in the news report is incorrect [as $0.0734 > 0.05$]</p>	<p><i>Note: Accept conclusion based on z-score rather than p-value.</i></p> <p><i>Low Partial Credit:</i></p> <ul style="list-style-type: none"> • $P(z < 1.79)$ • 0.9633 <p><i>Mid Partial Credit:</i></p> <ul style="list-style-type: none"> • $2[1 - P(z < 1.79)]$ • Work of merit in finding p-value and correct conclusion based on this <p><i>High Partial Credit:</i></p> <ul style="list-style-type: none"> • p-value found but no or incorrect conclusion
--	---	---

Q8	Model Solution – 50 Marks	Marking Notes
(c) (i)	<p>Assuming no replacement:</p> $ \begin{aligned} &\frac{18}{23} \times \frac{17}{22} \times \frac{16}{21} \times \frac{5}{20} \\ &= 0.11518 \dots = 0.1152 \quad [4 \text{ D.P.}] \end{aligned} $ <p>OR</p> <p>Assuming replacement:</p> $ \begin{aligned} &\left(\frac{18}{23}\right)^3 \times \frac{5}{23} \\ &= 0.10420 \dots = 0.1042 \quad [4 \text{ D.P.}] \end{aligned} $	<p>Scale 10D (0, 3, 5, 8, 10)</p> <p><i>Note: multiplication between relevant terms is necessary to be awarded above</i></p> <p><i>Low Partial Credit</i></p> <p><i>Low Partial Credit:</i></p> <ul style="list-style-type: none"> • One relevant fraction <p><i>Mid Partial Credit:</i></p> <ul style="list-style-type: none"> • Product of four fractions, two of them correct <p><i>High Partial Credit:</i></p> <ul style="list-style-type: none"> • $\frac{18}{23} \times \frac{17}{22} \times \frac{16}{21} \times \frac{5}{20}$ • $\left(\frac{18}{23}\right)^3 \times \frac{5}{23}$
(c) (ii)	$ \begin{aligned} &\left(\frac{12}{23} \times \frac{6}{22} \times \frac{5}{21}\right) 3! = \frac{360}{1771} \\ &= 0.20327 \dots = 0.2033 \quad [4 \text{ D.P.}] \end{aligned} $ <p>OR</p> $ \begin{aligned} &\left(\frac{12}{23} \times \frac{6}{22} \times \frac{5}{21}\right) + \left(\frac{12}{23} \times \frac{5}{22} \times \frac{6}{21}\right) + \\ &\left(\frac{6}{23} \times \frac{12}{22} \times \frac{5}{21}\right) + \left(\frac{6}{23} \times \frac{5}{22} \times \frac{12}{21}\right) + \\ &\left(\frac{5}{23} \times \frac{6}{22} \times \frac{12}{21}\right) + \left(\frac{5}{23} \times \frac{12}{22} \times \frac{6}{21}\right) \\ &= 0.20327 \dots = 0.2033 \quad [4 \text{ D.P.}] \end{aligned} $ <p>OR</p> $ \frac{\binom{12}{1} \times \binom{6}{1} \times \binom{5}{1}}{\binom{23}{3}} = 0.2033 \quad [4 \text{ D.P.}] $	<p>Scale 5C (0, 2, 3, 5)</p> <p><i>Low Partial Credit:</i></p> <ul style="list-style-type: none"> • One relevant fraction, for example, $\frac{12}{23}$ or $\frac{6}{22}$ or $\frac{5}{23}$ • Counts / lists different possible arrangements, for example, 3! or 6 <p><i>High Partial Credit:</i></p> <ul style="list-style-type: none"> • $\frac{12}{23} \times \frac{6}{22} \times \frac{5}{21}$ or any other relevant triple • Assumes keys are replaced and finishes

Q8	Model Solution – 50 Marks	Marking Notes
(a)	$F = 3000(1 + 0.024)^5$ $= €3377.70$	Scale 5B (0, 2, 5) <i>Partial Credit:</i> <ul style="list-style-type: none"> Work of merit, for example, some correct substitution into relevant formula; finds 2.4% as a decimal
(b) (i), (ii)	<p>(i) It is the amount that should be invested today to amount to €1000 in 1 years' time at the particular interest rate.</p> <p>(ii) $4000 = P(1 + 0.024)^6$</p> $\frac{4000}{1.024^6} = P$ $P = €3469 \cdot 45$	Scale 10D (0, 3, 5, 8, 10) <i>Note: In (i) Accept $P = \frac{1000}{(1+i)}$</i> <i>Low Partial Credit:</i> <ul style="list-style-type: none"> Work of merit in (i) or (ii), for example, formula in (i), correct substitution into relevant formula in (ii) 2.4% written as a decimal <i>Mid Partial Credit:</i> <ul style="list-style-type: none"> (i) or (ii) correct Work of merit in both parts <i>High Partial Credit:</i> <ul style="list-style-type: none"> One part correct and work of merit in the other part
(c)	$1 \cdot 024 = (1 + i)^4$ $(1.024)^{\frac{1}{4}} = 1 + i$ $(1.024)^{\frac{1}{4}} - 1 = i$ $0 \cdot 005947.. = i$ $\text{Rate} = 0 \cdot 59\%$	Scale 5C (0, 2, 3, 5) <i>Low Partial Credit:</i> <ul style="list-style-type: none"> Some correct substitution into relevant formula 2.4% written as a decimal <i>High Partial Credit:</i> <ul style="list-style-type: none"> $(1.024)^{\frac{1}{4}} = 1 + i$ Evaluates correctly $i = (1.024)^4 - 1$ Uses 3 or 12 instead of 4, but otherwise correct <i>Full Credit -1</i> <ul style="list-style-type: none"> Answer given as a decimal
(d) (i) (ii)	<p>(i)</p> $A(1 \cdot 0011)^{36} + A(1 \cdot 0011)^{35} + \dots$ $\dots + A(1 \cdot 0011)^2 + A(1 \cdot 0011)$ <p>OR</p> $= A[(1 \cdot 0011)^{36} + (1 \cdot 0011)^{35} + \dots$ $\dots + (1 \cdot 0011)^2 + (1 \cdot 0011)]$ <p>(ii)</p> $A[1 \cdot 0011 + (1 \cdot 0011)^2 + \dots$ $\dots + (1 \cdot 0011)^{35} + (1 \cdot 0011)^{36}]$ $a = 1 \cdot 0011, r = 1 \cdot 0011, n = 36$ $A \left[\frac{1 \cdot 0011 (1 - 1 \cdot 0011^{36})}{1 - 1 \cdot 0011} \right] = 12000$ $A = \frac{12000}{1 \cdot 0011 (1 - 1 \cdot 0011^{36})}$ $A = €326 \cdot 60 \text{ [2 D.P.]}$	Scale 15D (0, 4, 8, 12, 15) <i>Consider as requiring 3 steps:</i> <ol style="list-style-type: none"> Finds geometric series Substitutes into geometric formula Finds A <i>Low Partial Credit:</i> <ul style="list-style-type: none"> Work of merit in either part, for example, in (i) Writes 0.11% as a decimal; in (ii), sets answer in (i) equal to 12000 <i>Mid Partial Credit:</i> <ul style="list-style-type: none"> 1 step correct Substantial work of merit in both parts <i>High Partial Credit:</i> <ul style="list-style-type: none"> 2 steps correct <i>Full Credit -1:</i> <ul style="list-style-type: none"> Correct solution, but excludes second and/or second last term

		<ul style="list-style-type: none"> Investments made at the end of each month, otherwise correct
(e)	$E(x) = 11(0.52) + (x - 5)(0.15)$ $+ x(0.33) = 13.85$ $0.15x + 0.33x = 13.85 - 5.72 + 0.75$ $0.48x = 8.88$ $x = €18.50$	<p>Scale 10C (0, 4, 7, 10)</p> <p><i>Low Partial Credit:</i></p> <ul style="list-style-type: none"> Work of merit, for example, some correct term in $E(x)$ <p><i>High Partial Credit</i></p> <ul style="list-style-type: none"> Fully correct equation
(f)	<p>Cost Price = 82% of Selling Price</p> <p>Profit = 18% of Selling Price</p> $\text{Mark-up} = \frac{0.18}{0.82} \times 100$ $= 0.2195 = 22\% \text{ [nearest percent]}$ <p>OR</p> <p>Let x = selling price and y = cost price</p> $\frac{x-y}{x} = 0.18 \rightarrow y = 0.82x$ <p>Mark up:</p> $\frac{x-y}{y} = \frac{x-0.82x}{0.82x} = \frac{9}{41}$ <p>Mark up:</p> $\frac{9}{41} \times 100 = 21.95$ $= 22\% \text{ [nearest percent]}$	<p>Scale 5B (0, 2, 5)</p> <p><i>Partial Credit:</i></p> <ul style="list-style-type: none"> Work of merit, for example, states CP = 82% of SP Mentions 82% Finds 18% of a number